Molecular Docking

Team T18:

Blessing Anyangwe, Arushi Desai, Elizabeth Fishman, Kevin Jin, Kai Kim, Erin Kraus, Eugene Lee, Angelina Li, Bridget Liu, Nicholas Sardy, Aarna Tekriwal, Osariemen Unuigbe, Alexander Zatuchney, Eric Zhu

Our Purpose

Assess and compare the accuracy of molecular docking methods

Protein-Ligand Binding

Molecular Docking

Predicts **binding conformation** between **ligand** and **target protein**

- In-silico method
- Widespread applications in pharmaceutical fields
- Traditional programs vs. AI-based programs

Traditional Molecular Docking Programs

2 main parts:

Search Algorithm

Generates protein-ligand binding poses

- Conformational search
- Fragmentation
- Monte Carlo
- Genetic Algorithm
- Tabu Search

Score Algorithm

Calculates binding affinity

- Different metrics (kcal/mol vs. M)
- Determines optimal
 - binding conformation

5

SeeSAR

A traditional docking method

Estimated Affinities

6

Machine Learning-Based Molecular Docking Programs

- Optimization and accuracy through reverse diffusion
- "Learn" and predict data using scoring function

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, Tommi Jaakkola, DiffDock: "Diffusion Steps, Twists,and Turns for Molecular Docking" 2022

DiffDock-Pocket

8

A deep learning-based pocket-docking method

Process Overview

Step 1

Protein identification

• Establish protein dataset

Step 2

Molecular docking

- SeeSAR
- DiffDock-Pocket

Step 3

Analysis/Evaluation: compare generated RMSDs

2 > 0.999... = 1 \approx $^{5(2+2)}$ **101**₂= 5₁₀

Protein Dataset

 DockGen and why it's important

Calculating RMSD Values

- Python script
- Loaded molecules
- Matched atom order and aligned molecules

 $RMSD = \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_i^2}$

Calculated RMSD

Results

Limitations of the Study

- Solely using RMSD/Ångström
 - Small vs. Large structures
- Interface Limitations
- Operating System Optimizations

Future Research

- RMSD Calculators

- Alter the Dataset

Future Research

Why do this research?

Dockingin drug designing

Acknowledgements

- Mr. Hannes Stärk and Mr. Michael Plainer
- GSNJS Faculty
- Dr. David Cincotta
- Katerina Pouathas and Joel Moses
- GSNJS Alumni and Parents of Alumni

16

Thank you! Any questions?