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Kepler's Laws
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Kepler's First Law

Planets orbit in elliptical paths
with their star as a focus.



Kepler's First Law

e Planets orbit around their host star %

e These orbits are elliptical in nature
e The star occupies one focus of this ellipse

The equation for the planet’s orbit

a( P= ez)
1+ ecosd

=

r is the distance from the planet to the star, a is the length of the orbit’s
semi major axis and e is the eccentricity of the orbit.
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Kepler's Second Law

The radius from the star to the planet
sweeps out equal areas in equal amounts of
time.



Kepler's Second Law

As a planet moves around its star, the radius between the bodies
sweeps out an area which remains constant per unit time.

The change in area is given by:

| . h h
dA=—r*| — |dr=—4dt
2 r2 2

Where h is a constant such that h? = GMa(1 - e2) and r is the distance
between the planet and its star.
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Kepler's Third Law

The square of the period of a planet's
orbit is proportional to the cube of its
semi-major axis.



Kepler's Third Law

. The area of an ellipse is mab
. ais the length of the'semi-major axis and b is the length of the semi-minor axis.

. Let T represent the period of the planet’s orbit

The area can be calculated by integrating dA from O to T. From Kepler's 2nd Law,
dA = (h/2)dt. After integrating and solving for T2, the result is:

_ 4na?p?

T2=
h2

Since h? = GMa(1 - e2), the final result is:




4 Conservation of Energy

| 5 GMm
E=—mv<—

& a( 1- 62)
1+ ecosé

GMm
iy 2a

F=

Energy is conserved.
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Ellipse Geometry



4+ Ellipse Geometry

b,
+_:1 B a(l e)
; b2 1+ ecosd




Connecting E to 6

cosf + e

CosE =
1+ ecosf

rsinf =bsink

ol £ (254




Showing that— Is constant

M=E — esink
dM_ h _27:
d¢ T ab . T

Now we've connected time to 6
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Spherical Trigonometry



Spherical Trigonometry

. Geometry on a spherical surface has different rules
. Shortest path between two points lies on a “Great Circle”
. Spherical triangles are formed by these arcs

Spherical Law of Sines
sinA  sinB  sinC

sina sinb sinc

Spherical Law of Cosines

Vé -~ ~ \
s~ “Rtan(b) Rtan(ay™ « '\
- ~

P& R

cosc =cosacosh + sinasinbcosC
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Celestial Sphere



4+ A Shift in Reference Frame......

Principles

e An apparent sphere
formed by the sky (and its
other half below the
horizon)

e Rotates East to West

e Longitude, Latitude 2 Right
Ascension, Declination

ecliptic

Assumptions
e Arbitrarily large distances




+ Points of Reference

Equatorial Coordinates
e Celestial Equator

e Vernal Equinox

e Celestial Poles
Ecliptic Coordinates

e Ecliptic

e Vernal Equinox

e Ecliptic Poles

ecliptic
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Rise & Set Times



4+ Sunrise and Sunset

e declination determines the
path of the sun in the sky
e one hemisphere visible from a
given point on the Earth
o time the sun spends in
that hemisphere is the
time the sun is in the sky
e highest pointis noon eclptic
o subtract off for sunrise
o add on for sunset




Saturn Rise and Saturn Set

e Given 6 for Saturn, we can calculate
“ecliptic” coordinates

U

e Given ecliptic coordinates, we can
calculate Right Ascension and
Declination

U

e Given RA and Decl., we can calculate

time spent in the sky.
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Machine Learning -
Error Analysis



Generating Data: Kepler's Laws

_ , INPUTTED
CONSTANTS

For each planet,
constants were found
and inputted

2
-2
-2
-2

2
-2

PROGRAMMED
CALCULATIONS

Used mathematical
equations derived
previously to generate
hundreds of data values
— from many times




Generating Data: Kepler's Laws

Uranas Comtants

a (format
1891669724 12h 36m
94809691 12h 37m

167633 12h 39m 16

Mars Constants

043072020

0513172020
63012020

071317202
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Jupiter Constants
a
0.464
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10 50052105

15
I 50
-1.35184452"
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153877

1242626212

1

3574101056 1

357 589544
3577749637
357.9603834
358 1398218

7108608

WMo 318

721 1584672562

1490820617 153

2653990126

7_33p

1769836
1769812

971
1769512

1626857218

2161325741

6728 21h 33m 14.08s 1
02019 21h 32m 31 255 16° 0

;ma]

116659605 283 9526904
313684644 2863631637
286939744

29143328

a (formatted) & (formatted
21h 33m 54.125 15752113

63 48
2151

9765826

18h 5

19h
19h




Application: Predicting Saturn’s Orbit  +

Error Calculation MINOR
Right Ascension Percent Error Over Time Declination Percent Error Over Time FLUCTUATION
AROUND 0%
Explained by:

Gravitational
Forces from
Other Objects
(ex. Jupiter)

Effects of
General
Relativity




Linear Regression Models

Generated celestial coordinates for

Saturn for each day 01/01/2014- model_alpha = LinearRegression()
model_alpha.fit(X_train, y_alpha_train)

05/31/2024

Obtained actual values from an
ephemeris model_delta = LinearRegression()

. i ' : del_delta.fit(X_train, delta_trai
Determined linear relationships nodel_delfta jiitiX thainy v delta train)

between calculated data and actual
observations (linearized error) y_alpha_pred = model_alpha.predict(X_test)
Tested regression models on test y_delta_pred = model_delta.predict(X_test)
data

Compared models’ predictions to

ephemeris data




Model Results

Right ascension (a)

Predicted vs Actual Right Ascension
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Model Results

Declination (8)

Predicted vs Actual Declination Residuals for Declination
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Random Forest Models

Using more complex models to account for underlying periodic trends

Right ascension (a)

Predicted vs Actual Right Ascension
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Declination (§)

Predicted vs Actual Declination

Residuals for Declination
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Machine Learning -
Anomaly Detection



One-Class Support Vector Machines

Anomaly Detection in Astronomical Data

] ANOMALIES
DETECTED

Anomaly

Radial Basis
Function Kernel

Explained by:

Unusual
celestial events
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Conclusion



Machine Learning Integration

Linear regression and random
forest models increased
prediction precision.

One-Class SVM detected
anomalies in planetary orbits,
indicating unusual events or
errors

Key Insights

Classical mechanics and modern
techniques to enhance
astronomical predictions.

Future work could involve training
more complex models for
improved accuracy.

Extend techniques to predict other
future celestial phenomena and
objects.
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